

Castle IT system for bus-coded communication

Product description

The system is used for universal bus-coded communication (CAN, LIN, K-Line) between a test PC and the connected DUTs as well as for continuous monitoring of their communication and function states.

Field of application

Laboratory, endurance test, end-of-line test in the area of production/manufacturing

Castle^{/T} system for bus-coded communication

Technical data

Test bench/device

- Slots for up to 6 castle-pim $^{\prime\prime}$ in 19" rack insert/3 U with partial front panel
- Internal power supply unit for pim supply with 230 V
- Common backplane bus
- CAN connection to the PC, on the front (D-Sub-9)
- Supply inputs Kl. 15, Kl. 30 on the front (D-Sub-15)
- μcontroller ARM 32-bit

Software

- 32-bit multitasking operating system castle-pim¹⁷, embedded
- Separation between functional and communication level
- Download of the communication level via CAN bus from the superordinate test PC
- Communication matrix PC = communication matrix castle-pim¹⁷
- Only one castle-pimIT is needed for different types of test units configuration is done completely via software
- Flexible communication changes, as the communication matrix can be edited on the PC in ASCII format.
- Functions of the communication level
 - Direct forwarding of DUT messages with minimum time offset, max. 5 ms
 - Network management, automatic transmission of predefined messages via superordinate PC on/off switchable
 - Monitoring of selected messages for timing (resolution 1 ms) and CRC
 - Monitoring of selected messages for content, mask comparison, e.g. for switch position monitoring
 - Residual bus simulation by continuous transmission of predefined messages
 - Various communication protocols (OSEK, KWP2000, CAN direct, LIN, ...)
 - Intermediate storage of DTC errors sent by the DUT
 - Measurement and monitoring of the analogue inputs (voltage, current Kl15, Kl.30,
 - + optionally 4 more)
 - Switching of the digital outputs (Kl.15, Kl.30 + 2x Rel. + optionally 4 more)
 - Querying and monitoring the digital inputs (optionally 8 free inputs)

Scope of testing

- 2-point calibration of current and voltage measurements, download of calibration values
- DUT connection via D-SUB 15-pin at the front, optionally D-SUB 37-pin at the rear
- 1x CAN 2.0A to the unit under test, baud rate programmable
- · Low-speed CAN via internal additional adapter, optional
- 1x LIN or K-bus, switchable via software
- Output signals Kl.15, Kl.30 switched, supply via external power supply unit
- 2 additional relay outputs C, NC, switchable via software
- Analogue measurement current consumption Kl.15, Kl.30, 0-1000 mA / 16 bit resolution
- Analogue measurement voltage Kl.15, Kl.30, 0-30 V / 16 Bit resolution
- 1x RS232C interface

Castle IT system for bus-coded communication

Technical data

Scope of testing

- Option board "Single-wire CAN"
 - Integrated CAN dongle to achieve a single-wire CAN bus instead of CAN node 2.
 - Monitoring error pin from CAN transceiver
- Option board "I/O/ANA" via D_SUB 37-pin.
 - 4 additional analogue measuring channels 10 V differential / 16 bit resolution
 - 8 additional digital inputs, opto-decoupled
 - 4 additional digital outputs, opto-decoupled

Input-/visualisation units	Dimensions/Transport
Communication through higher-level test PC	 Approx. 430x134x420 (WxHxD in mm)
Test time	Exemplary device type